Anatomical Approach Study about injury of tennis elbow

Kim, Chul Yong
Dept. of physical therapy

〈Abstract〉
As the national income increase, many people enjoy sportily in popularization of sports.
So, many people see the doctor, because one that enjoy tennis, table tennis, and squash has pain part of elbow joint.
Most of them are tennis elbow disease.
So, I consider reason, symptoms, therapy of tennis elbow in general.

*reason
first: situations muscle in inflammation or cellulose inflammation of elbow around have situation.
It happen many because for wrist is moved suddenly without warming up.
second: situations periostitis of surgical of numerous part, it many because a part of muscle fiber of muscle insertion is rip.
third: situations arthritic or bursitis of elbow joint, it happen many because chiefly ligament injury around elbow joint.

*symptoms
first - It is pain of elbow part
second - In some case, There is Radiation pain from arm to wrist
third - power of double man’s fist was weaked.
forth - When press in elbow region, complaint hard pain.
fifth - In this case supination it happened terrible pain.
*therapy
first: In acute pain case have several times the day to first ice pack or cool pack and elbow is immovable with fix.
second: chronic pain case have the day one or two hat cataplasm, twenty sec. or thirty sec. and the performance have simple massage.
third: extreme pain case have choic injection or intraoperation. If it is extreme pain, you have choic injection or intraoperation.
Ⅰ. 서론

인류문화의 발달과 생활의 환경이 시대적으로 변천함에 따라 인간문화 생활의 구조도 변화되어 그로 인한 여러 가지 질병이 다양하게 늘어가고 있다. 그 중 직업의 분업화와 스포츠 생활로 인한 신체상의 불균형과 손상도 매년 다양하게 증가하고 있다. (대한물리치료사 합회지, 1985)

근래 우리 나라의 경제 성장과 더불어 국민 생활에 많은 변화가 오고 있으며, 이러한 사회적 변화는 소득의 증가와 자유시간이 많아짐에 따라 새로운 레저 문화를 창출하고 있다.

Tennis elbow는 처음 tennis 선수에게서 발견되었다고 하여 명명되었으나 전완(forearm)을 회내(pronation)와 회외(supination) 및 과신전(hyperextension) 운동을 반복하는 사람에게서 연령에 관계없이 혼히 발생하는데 외측상골염(lateral epicondylitis) 혹은 상완요활염(Radiohumeral bursitis)이라고도 한다.(Rene Cailliet, 1978)

최근 라켓볼, 탁구, 스쿼시 등에 관심을 갖는 경향은 주관절의 손상의 수가 크게 증가하는 원인이 되고 있다. 또는 사무실에서 근무를 하는 사람들의 경우에는 긍씨를 많이 쓰거나 타이포를 무리하게 계속하였을 때도 온 수 있고, 가정 주부의 경우에는 손말레를 심하게 했을 때 나타날 수도 있다.(생활 속의 물리치료, 1991)


오늘날 Tennis는 생활 체육 분야에서 뿌린한 체력과 건전한 정신을 기르며 생활의 만족을 충족 시켜주는 문화 활동으로 각광을 받고 있으며, 가장 손쉽게 접근할 수 있
고 줄길 수 있는 스포츠 종목이다. 그러나 테니스는 장시간의 경기에 전달 수 있는 심폐기능의 증진과 근 지구력이 요구되는 운동으로 주로 스타트- 급성지 등의 기능이 연속적으로 행하여지므로 이에 의한 상해가 발생하게 된다.(한국체육학회지, 1986) 스포츠가 인간의 정신과 육체의 아 무리 좋은 영향을 미친다고 할지라도 스포츠 활동시 발생하니 사고를 최소한으로 방지할 해야 한다.(스포츠 의학, 1973)

이에 따라 본인은 Tennis elbow의 전반적인 사항에 관해 임상적 양상과 물리치료를 중심으로 문헌상 고찰로서의 기초적 자료를 제공할 뿐만 아니라 예방처방의 교육을 할 수 있는 수단으로 기여하고자 한다.

II. 본론

1. 주관절의 해부학적 구조

골격계는 206개의 뼈와 그것을 연결하는 관절, 인대, 결합조직, 조절조직으로 구성되어 있다. 그 중 상지는 64개의 뼈로 구성되어 있고 또한 상완골과 요골, 척골로 구성되는 주관절은 인체에서 점간관절로서 장축에 대하여 150~160°의 비틀림을 가지고 있다. 상완골체에는 삼각근이 부착되고 전면에는 팔꿈치의 굽근, 후면에는 신근이 있다. 요골(Radius)과 척골(Ulna)은 상단과 하단에서 관절하고 관절두와 관절두의 관계가 역으로 되어있기 때문에 두 뼈는 잘 연결되며 요골의 척골을 축으로 하여 돌아가는 회내전, 회외전 운동을 한다.(Stanley Hoppenfeld, 1976)

그림 1. 전완의 회내, 원회내근
Tennis Elbow 상해에 대한 해부학적 연구 5

전완의 회내, 원회내근은 요골이 척골위를 당감에 의해 회내를 만든다. 주관절은 극도의 신전과 굴곡시 고유의 관절 안정성을 가지고 있다.(Stanley Hoppenfeld, 1976)

Tennis elbow에서 손상 받는 근육관(tendon)은 전방전근근으로 이는 superficial group과 deep group으로 나눌 수 있다.(대한물리치료사 협회지, 1985) 전완의 전면부 근 중 천근(superficial group)은 원회내근, 요측근신근, 척측근신근, 장장근이다.

중간근(intermediate group)은 천지골근의 하나이고, 심근(deep group)은 심지골근, 장무지골근, 방형 회내근으로 구성되어 있다.

전완의 후면부 근 중 천근(superficial group)은 완요골근, 장요측근신근, 단요측근신근, 속지골근, 소지골근, 척추측근신근이며 심근(superficial group)은 회외근, 장무지외근, 단무지외근, 장무지신근, 속지신근으로 구성되어 있다. 지신근, 소지신근, 척측근신근 모두 상완골의 외측상과에서 근기능을 보완하여 상완요골근이 가장 위쪽에, 그리고 나머지 근육들은 가장 아래쪽부터 신근근근에 의해 연결된다. 작용은 상완요골근이 전완의 근육의 근육량이 작고 작용강도는 상하로 전부로 작용하며, 나머지 근육은 모두 손목과 손가락의 신천에 이바지하고 있다.

2. 주관절의 일반적인 특징

주관절 복합체의 관절과 근육들은 손을 위해 다자인되었다. 주관절 복합체의 구조는 상지를 강인하거나 쾌의 하여 손의 운동성을 제공한다. 이 기능은 상지의 긴이는 일정하지만 근육의 방향을 통해 손의 움직임을 가질 수 있고 혹은 더 넓리 가치질 수 있다. 주관절 복합체의 이연은 또 다른 측면에서 부가적인 손의 운동성을 제공한다. 손을 위한 운동성 제공과 관련하여, 주관절복합체의 구조는 손으로 도구를 사용하거나 혹은 연장을 사용할 때 손의 섬세한 움직임과 강력한 동작을 할 수도 있도록 안정성을 제공한다. 15개의 근육 중 대부분이 주관절 복합체를 통해하여 수관절 혹은 주관절에 의해 연결되어 있다. 주관절 복합체의 구성은 주관절 즉 상완척골관절(humeroulual), 그리고 상요절(superior radioulnar)관절과 하요절(inferior radioulnar)관절으로 되어 있다. 상지의 길이를 강인하게 쾌게 하는 것은 주관절에서 하게되며, 상완골의 원위골과 요골(radius)과 척골(ulnar)의 근위골로 주관절이 형성된다. 주관절은 접판관절(hinge joint)로써 그 기능은 굴곡과 신전이고 따라서 운동의 자유도가 1°인 일축성 가동관절(uniaxial dartrodiol joint)이다. 굴곡과 신전은 시상면상에서 관상골을 중심으로 이따난다. 두 개의 중요인대와 5개의 근육이 주관절에 연결되어 있다. 그중 3개의 근육은 굴곡근으로서 관절의 앞부분을 통과한다. 다른 2개의 근육은 신전근으로서 관절의 후부를 통과한다.
상요관절(superior radioulnar)과 하요관절(inferior radioulnar)관절은 한 관절로써 기능을 하며, 따라서 두관절이 함께 작용하여 전완의 회전을 일으키며 운동의 자유도가 1°이다. 이 관절은 회외(supination)와 회내(pronation)는 횡단면상에서 장축을 중심으로(longitudinal axis) 일어난다. 6개의 인대와 4개의 근육이 이 관절에 관련된다.

두개의 근육은 회외를 위해 또 두개의 근육은 회내를 위해 작용한다. 주관절과 상요관절은 하나의 관절낭으로 쌓여 있지만 별개의 관절면(articulation)으로 구성된다.

3. 상완요골관절면과 상완요골관절의 구조

가. 상완관절과 척골관절면(Articulating Surface on the humerus and Ulna)

관절면은 관절연골(articular cartilage)로 덮여 있고, 상완골의 원위 끝에 있는 두 개의 과 사이에 위치한다. 활차는 상완요골관절면(humeroulnar)의 한 부분을 형성하고 원위상완골의 전내측(anterior medial aspect)에 위치한다. 활차구(trocheal groove)는 활차주위를 나선형으로 경사지어 있고 활차를 내측과 외측으로 나눈다. 활차의 내측은 외측보다 더 원위로 뒤어 나왔으며 전체 활차는 상완골체로부터 약간 앞쪽으로 각을 형성한다. 활차구의 경사도는 개인차가 있어서 골극과 신전시 전완 운동에 영향을 준다. 활차는 비대칭적이고 말안장과 같은 면이며 즉 흡적적으로는 오목(concave)하고 전후로는 불록(convex)하다.(Stanley Hoppenfeld, 1976)

![그림 2. 상완요골척골관절](image-url)
나. 요골과 채골의 관절면(Articulating Surface on the Radius and Ulna)

채골과 요골의 관절면(articulating surface)은 상완골의 관절면과 함께 관절을 이룬다. 왼쪽관절(humeroulnar)에서 채골의 관절면은 반원형(semicolon-circular-shaped)이고 오목하며, 왼차절전(trochear ridge)에 의해 독갈지 않은 두 부분으로 나뉜다. 환차 윤기
는 상완에 있는 환차구와 맞물린다. 상완요골관절(humeroradial)의 요골측 관절면은 요골의 근위 구부분 즉 요골두가 된다. 이것은 접모양인 오목면이며 타두리(rim)로 둘러싸여 있다.

다. 관절(Articulation)

상완척관절에서 채골과 상완골 사이에 관절면은 환차 위치에서 채골의 활주운동(sliding motion)이 제일 먼저 일어난다. 신전시 환주는 주두돌기(olecranon process)가 주두에 들어가게 계속된다. 굴곡시키는 채골의 활차계가 활차구를 활주하여 완전 굴
곡시 관상돌기(coronoid process)가 관상돌기와(coronoid fossa)의 맨바닥(floor)에 닿게 된다.(London, 1981)

라. 관절낭(Joint Capsule)

상완척관절, 상완요골관절, 상요척골관절은 하나의 관절낭으로 쌓여 있다. 관절낭의 앞부분은 상완골의 들기와(coronoid fossa)와 요골의(radial fossa) 바로 위쪽에 부착되고 채골의 구상돌기 가장자리에 부착한다. 요골에 부착되는 관절낭은 요축관절면(radioulnar articulating)의 인대와 석여서 부착된다. 관절낭의 뒷부분은 상완골두주두
와(olecranon fossa)의 상위 가장자리에 부착된다. 이 관절낭은 매우 크고, 느슨하며, 앞
부분과 뒷부분은 약하지만 양옆은 인대로 보강되어 있다. 지방 패드(fat pad)들이 주

마. 인대(ligament)

인체에 있는 대부분의 관절관절에는 측부인대(collateral ligament)가 있는데 주관절
에도 있다. 측부인대들은 관절의 내/외측 안정성과 관절면 접촉유지를 제공하기 위
해 관절관절 내/외측에 있다. 주관절이 결합된 2개의 종류 인대들은 내측측부인대
(medial collatera, ulna)와 외측측부인대(lateral collatera, radial)이다. 내측측부인대는 상각형인대로써 전방(anterior), 경사(oblique), 후방(posterior) 세 부분으로 구성되어 있다.
그림 3. 주관절 내측외측인대


바. 근육 (Muscles)
주관절과 관련된 근육들은 3개의 굽곡 근과 2개의 신전근으로 구성된다. 주관절의 중요골골근은 상완근 (brachialis), 상완이두근 (biceps brachii), 상완요골근 (brachioradialis)이다. 상완근은 상완골체 하부의 전면 (anterior surface)에서 시작하여 척골의 구상돌기에 부착된다. 상완근은 생리학적 횡단면 (cross-sectional area)과 용적이 크다. 상완이두근은 장두 (long head)와 단두 (short head)에서 시작된다. 단두는 건갑골의 오しっ돌기 (coracoid process)에서 시작하고, 장두는 건갑골의 관절과 관절상부 (supraglenoid)에서 시작한다. 두 개의 두에서 시작된 근 섬유들은 요골의 결절 (tuberosity)에서 강한 진 (tendon)으로 정지하는 동시에 다른 섬유들은 전완의 굽곡근위에 있는 전완의 근막 (fascia)과 섞여 내측으로 들어가는 이두근 근막 (bicipital aponeurosis)에 정지한다. (임 체해부학, 1977) 상완요골근은 상완골의 외측상과 (lateral supracondylar ridge)에서 기
시하고, 요골의 아랫쪽 끝(steroid process) 위쪽에 정지한다. 상완요골근은 근섬유가 길고, 상대적으로 적은 생리학적 횡단면(physiologic cross-sectional area)을 가지고 있다. 주관절의 두 신전근들은 상완삼두근과 주근(anconeus)이다. 상완삼두근은 장두(long), 내측두(medial), 외측두(lateral)로 3개의 머리(head)가 있다. 내측두와 외측두는 상완골에서 기시하고 장두는 관골의 향관절과 결절(infraglenoid)에서 기시한다. 3개의 머리는 공통된 건(common tendon)으로 바뀌어 주두돌기에 정지한다. 주근은 상완골 외측상과(lateral condyle)에서 기시하여 주두돌기와 관골의 후면에 정지하는 작은 삼각형의 근육이다.(Netter, 1987)

4. 상완척골관절과 상완 요철관절의 기능
(FUNCTION : HUMEROULNAR AND HUMERORADIAL JOINTS)

가. 운동의 축(Axis of Motion)

골격과 신진을 위한 축은 상대적으로 고정되어 있고 활차와 수두의 중앙을 지나가고 상완골체를 자축으로 이등분한 점을 통과한다.(Hoppenfeld, 1976) 상지를 해부학적 위치에 두었을 때 상완골의 장축(longitudinal axis)과 전완의 장축이 서로 주관절에서 만날 때 내측에 예같을 만든다. 이 각은 관절면의 요철 때문이며, 상완골과 관련하여 전완이 왜전된다.

![그림 3. 주관절의 운반각](image)

이 각을 운반각(carrying angle)이라 부르고, 남자보다 여자가 약간 더 크다. 남자는 평균 5°이며, 여자는 10~15°이다.(Hoppenfeld, 1976) 운반각의 증가는 좌우 비교하여 한쪽이 더 클 경우는 비정상이다. 이 각의 크기가 평균보다 증가했을 때를 외반주
(cubitus valgus)라 부른다.

나. 가동범위(Range of Motion)

d. 근육의 작용(Muscle Action)
주관절 운동에서 3개의 굴곡근 역할은 작용요소의 수, 작용하는 근육의 위치, 주관절과 인접한 관절의 위치, 전완의 위치, 작용된 하중의 크기, 근 수축의 형태, 운동의 속도에 의해 결정된다. 상완근은 관절축 가까이 정지함으로 근육이 속아오르(spurt), 혹은 운동성을 위한 근육이라 생각된다. 상완근의 모멘트 팔(MA)은 주관절 100° 굴곡보다 조금 더 굴곡했을 때 최대이며 45° 따라서 주관절은 이 위치일 때 생산되는 토크가 최대이다. 운동이 빠르거나 느린 운동시 모든 근수축 형태(동착성, 구심성, 원

상완삼두근 전체의 효율성은 전관의 위치에 의해서는 영향을 받지 않지만 주관절의 위치 변화에 의해서는 영향을 받는다. 상완삼두근의 장부는 주관절을 동파함으로 장부의 활동은 전관절의 위치변화에 의해 영향을 받는다. 장부는 전관절이 과신전된 상태에서 주관절 완전신전을 시도했을 때 능동 불충분(actively insufficient)이 된다. 이와 같은 예에서 주관절과 전관절의 근육이 동시에 채워진다.


5. 요척관절기능(FUNCTION : RADIOUNAR JOINT)

가. 운동의 축(Axis of Motion)

회내는 회외를 위한 축은 요골두로부터 척골두를 연결하는 장축이다.(Kapandji, 1970) 회외시에는 요골과 척골이 서로 나란하고 회내시에는 요골이 척골을 가로지른다. 회내와 회외를 할 때 척골은 아주 조금 움직인다. 근위 척골의 운동은 무시해도 좋다. 원위 척골의 운동은 그렇게 크지 않으며 요골의 운동과 반대 방향으로 운동한다.(Palmer, 1984)

나. 가동범위(Range of Motion)

요척관절의 ROM은 150°이다.(Palmer, 1984 : Werner Kuprian, 1982) 회내와 회외의 ROM은 주관절을 90° 굴곡하고 측정한다. 주관절을 90° 굴곡하면 상완골을 고정시키게 되고 요척관절의 회전과 전관절에서 일어나는 회전을 구별할 수 있다. 주관절이 완전히 신전되었을 때 회내와 회외는 전관절의 회전과 함께 일어난다. 주관절이 신전된 위치에서 회내의 한계는 상완이두근의 수동장력에 의한 것이다. 주관절의 모든 위치에서 회내는 요골과 척골의 접촉으로 한계가 결정되고 후요척(posterior radioulnar) 인대와 주관절의 내측축부(medial collateral) 인대의 후섬유(posterior fiber)의 장력에 의해 범위가 결정된다.(Currier, 1972)
다. 근육의 작용
회내 근육들은 요골을 당겨 요골체와 끝이 착골위로 올라가게 하여 회내를 만든다. 원회내근은 신호통 관절의 안정성에도 기여한다. 원회내근은 병각력을 생성하여 요골두와 소두의 접촉을 유지하도록 지원한다. 동형회내근은 한관절 근육이며, 주관절 위치변화에 의해 영향을 받지 않는다. 동형회내근은 저항이 있거나 없거나 간에 회내에 작용하고 회내의 속도가 느리거나 혹은 빨라도 작용한다. 또한, 동형회내근은 원위 요척관절의 압축유지를 위해 관여한다.(Amis, Dowson & Wright, 1980)

![그림 4. 회외와 회내](image)

6. 해부학적 분류
Tennis elbow의 분류방법은 학자들에 따라서 다양하나 여기서는 ‘Dr. Cyriax’의 손상부위에 따른 분류를 소개하기로 하겠다.


![그림 5. 주관절 근, 건 손상부위](image)
가. 상완골의 외측상과와 충신근근의 전골막면접부(tenoperiosteal junction)의 절어짐이 가장 흔한 손상이며 Tennis elbow의 약 90%를 차지한다.(James Cyriax & Petricia Cyriax, 1983)
나. 요골촉수근근근의 근부(muscle belly)의 절어짐의 약 10%가 이 부위의 손상이다.(James Cyriax & Petricia Cyriax, 1983)
다. 충신근근과 요골촉신근막, 특히 요골촉수근근접면부(extensor carpi radialis junction)의 절어짐.
라. 장요골촉수근근근의 기시부의 절어짐.(스포츠 과학 연구 보고서, 1980)
(다. 라 부위의 손상은 드물게 나타난다.)

7. 병리학적 원인
외측상과 테니스엘보의 원인을 살펴보면 화자에 따라 여러 가지 설이 있으나 여기서는 많은 전위자들이 일치하고 있는 ‘Romer’의 요인적 분류(스포츠물리치료학, 1996)를 소개하기로 한다.
가. 광범위(elbow) 주위 근육의 근염(myositis)이나 섬유조직염(fibrositis) : 이는 내.외측과에서 기치하는 근육을 계속해서 급격히 움직임으로써 발생하며 외과(lateral condyle)와 상관절면(supra condylar ridge)에서 근육이 가장 잘 침범된다.
테니스에서 'back hander'를 할 경우 상완요골근이 당겨지기 때문에 주로 손상받게 된다.
나. 외과(lateral condyle) 부위의 골막염(periostitis) : 이 경우에는 근막부 위로부터 약간의 근섬유가 절어지는 것이 원인인 듯하다.
다. 상완관절(superior radio-ulnar joint)의 골막염(synovitis) 또는 속발성 관절염(later on arthritis) : 율상임대(annular ligament)의 손상과 함께 나타날 수도 있다.
이러한 형태들은 복합해서 나타날 수도 있으나 별반히 단독으로도 나타나고 단, 요골촉수근근근이 주로 침범되는 근육이라고 한다.

8. 증상 및 증후
통증은 보통 월의, 또는 그 외의 상태에서 심하게 또는 반복해서 손목의 신진운동을 한 후에 시작되는데(Morrey, Chao & 1976) 긴장(strain) 당시에는 아무 것도 느끼지 못하다 며칠 후에 요골상완관절 부위에 약간의 외상종성이 지속된 후에 점차적으로 불편감이 증가하는데, 이러한 증상은 2주안에 완전히 고조된다.(James Cyriax &
Petricia Cyriax, 1983)

일반적인 증상(Wale, 1976)을 요약하면
가. 동통 : 골격의 부위의 동통, 때로는 이러한 동통은 전방의 동통을 따라 손목과 손동까지 미친다.
나. 쥐는힘(grip) 약화
다. 손목의 신전 및 요골측변위(radial deviation)시 저항을 주변 동통이 증가된다.
라. 압통 : 염증부위에 압박을 가하면 심한 동통을 호소한다.

그림 6. 압통점

마. 요골두의 부종(edema)과 압통(tenderliness)이 있거나 없을 수도 있고 회내, 회외 운동시 동통을 호소하는데 이러한 경우는 보통 골막염이나 관절염을 가리키는 것이다.
바. 골막의 염증은 유아조직과 유착을 동반하여 증가한다.(Basmajian, 1978)

9. 이학적 검사

골격치를 약간 굴곡시킨 상태에서 검사자의 한 손으로 검사자의 전박을 고정하고 주먹을 취고 손목을 신진시키도록 지시한다.

검사자의 다른 손으로는 주먹의 손동에 대고 손목을 굴곡시키는 힘을 가한다.

이때 반일 Tennis elbow라는 정의는 손목의 신진근의 기시부인 외측상과의 감촉스런 심한 통증을 느끼게 될 것이다.(An, 1981)
10. 치료

Tennis elbow의 치료방법에는 여러 가지가 있다.

가. 고정

손목의 신진근의 긴장을 완화하기 위하여 삼각견(sling), 석고봉대(plaster cast) 등으로 일시적 고정을 하는 것은 매우 효과적이다. (Robert Brashear, Berely Raney, 1978)

관절염형(arthritic type)일 경우 움직임에도 동통을 느끼지 않을 때까지 충분한 기간의 휴식을 요하므로 유용하며 골막형(periostitic type)에서도 고정을 주장하는 사람이 있다. (Wale, 1976) 이때는 완관절배굴부목(cock-up splijnt)을 적응하는데 관절강직(joint stiffness)을 피하기 위해 부드러운 운동을 해야함으로 매일 완화시켜 주어야 한다. (Samuel, & Turek, 1977)

나. 국소주사 요법
Salicylate 제제, Butajolidin 등 기타 항염진통제 약물 사용이 치료를 촉진한다고 한다.(대한정형외과학회, 1983)

다. 도수정복

도수정복의 목적은 건의 갓받을 분산시키기 위해 통증이 있는 반혼(scar)에 의해 연 결된 두 면을 분산시키는 것이다.

이 새로운 분열은 머지않아 갓받이 없는 상태에서 새로운 섬유조직에 의해 연결된다.(James Cyriax & Petricia Cyriax, 1983)

이 방법은 외측상과(lateral epicondyle) 부위일 경우 적용하는데, 주사를 하지 않은 상태에서 먼저 시도할 수도 있다. 먼저 환자에게 충혈(hyperemia)을 일으키도록 염지 손가락으로 외측상과(lateral epicondyle)의 전 위를 강하고 깊은 마찰을 약 15분간 시행한다. 충혈이 고조되면 즉시 manipulation을 시행하는데 시술자는 앉아있는 피을자
의 뒷에 위치하여 피을자의 팔이 직각이 되도록 들어올리고 어깨는 내외전, 전백은 회내시킨다. 시술자는 피을자의 손목을 완전히 굽고시킨 그리고 다른 손은 피을자 굽힌 팔꿈치에 가볍게 얹는다.

이 상태에서 손목은 완전히 굽고을 유지하면서 순간적으로 팔꿈치를 제때르게 완전히 펴다.(Elbow full extension) 이렇게 하면 요골측수근신근이 팔꿈치와 손목에 걸쳐 있기 때문에 날카로운 갓받이 요골측수근신근에 가해지게 된다.

이러한 방법으로 한달 또는 그 이상 1주일에 두번씩 반복 시행한다.(James Cyriax & Petricia Cyriax, 1983)

특히 유의할 것은 손목의 부적절한 굽고상태유지로 신장이 균이 아닌 관절에 가해질 경우 외상성관절염(traumatic arthritis)이 발병할 수 있는데 이때는 관절염이 가라앉을 때까지 삼가야 할 것이다.

또한 완전한 신장이 되지 않거나, 관절낭의 이상증상이 있을 경우는 급기이며, 근육에 원인이 있는 Tennis elbow일 경우에도 국소주사나 부목은 도움을 주나 manipulation은 급기이다.(Rene Cailliet, 1978)

라. 테이핑 요법

주관절의 과신진을 예방하기 위한 테이핑 방법(스포츠물리치료학, 1996)에 필요한 재료는 11/2인치 테이프를 1롤, 테이프접착제, 2인치 탄력봉대를 준비하여 환자의 한 측 주관절을 90도 구부리고 치료사는 환자의 환측의 팔과 마주보는 위치에서 주관절에 상하로 각각 5cm 되는 지점에 엉커 테이프를 감는다. 또 테이프를 10인치와 4인치
로 잘라 10인치 테이프 위의 중앙에 4인치 테이프를 붙여 테이프를 단단하게 보강한 다음 주관절 상방의 앵커 테이프의 전면에서 주관절을 가로 절러 하방의 앵커 테이프를 붙입니다. 이와 같은 방법으로 5겹 정도를 기본 checkerein 위에 걸쳐 붙입니다. 다시 앵커 테이프 위에 3개의 테이프를 걸쳐 붙여 checkerein이 확고하게 고정되게 한다. 그리고 테이프가 많이 인하여 미끌어질 것에 대비하여 테이프 위에 탄력봉대를 8자 형태로 감아 마무리를 한다.

그림 9. 테이핑요법

마. 온열요법 및 맛사지

물리치료의 관점에서 1차적 목표는 통증의 제거 및 예방 또는 유착(adhesion)을 부드럽게 하는 것이다.(Wale, 1976)

온열요법과 맛사는 통증제거를 위해 주어지는데, 적외선조사(infrared radiation), 복사열(radiant heat), 그리고 단파투열(short wave diathermy) 등도 모두 적합하다.

맛사는 침착물(deposit)을 제거시키기 위해서도 시행한다.(Werner Kuprian, 1982)

금성기동안은 단편적인 맛사를 하는데, 부드러운 경찰법(effleurage)과 kneading으로 시작하며 통증이 있는 팔꿈치 부위는 피해야 한다고 한다.

금성기가 지나면 손가락으로 kneading과 마찰(friction)을 첨가할 수 있으며 깊이를 전가할 수 있다.(Wale, 1976)

Dr. Cyriax는 건이나 건근의 손상일 경우 맛사지에 빠르게 반응하므로 집중적으로 깊은 맛사를 할 것을 권한다. 외측상과(supracondylar)의 상과융선의 장요골측수근 신근의 기시부 긴장일 경우에는 환자의 손을 회의 상태에서 잡아주고 상과(supracondyle)의 모양에 따라 상과융선으로부터 기시하는 선을 따라 위아래를 염지로 맛사지 한다.(James Cyriax & Petricia Cyriax, 1983)
이때 나머지 손가락으로는 반대압력을 준다.
근의 신장일 경우 환자의 팔을 반신전(half extension) 시키고, 거의 정부 회내 시킨다.
이러한 상태에서 총신건근(common extensor tendon)은 요골두위에 위치하게 되므로 건의 모양에 따라 건을 교차하여 전후방향으로 엽지로 맞사지 한다.
맞사지는 한번에 10~15분간 하며, 다른 형태의 치료와 병행하지 않는다고 한다.
골막형(periostitic type)에서의 외과와 관절염형(arthritic type)에서 요척관절 부위는 맞사지를 피하여야 한다.(Wale, 1976)

바. 운동치료
이완수동운동(relaxed passive movement)을 시행하고 초기부터 약한 동동운동(gentle active movement)을 병행하여야 한다.(Wale, 1976)
동동운동은 손상근육의 동작성운동(isometric exercise)으로 시작하며 동중의 역치(threshold)를 넘기지 않아야 한다.(Werner Kuprian, 1982)
건장된 근육 및 전신근육을 보호하기 위하여 팔꿈치의 동동운동은 손의 동작 없이 시행하며, 다음으로 손목의 근육, 신진, 회내, 회외 운동으로 연결한다.
2~3주간에 보통 동동운동을 시작할 수 있는데, 반복되어진 동동운동은 유착(adhesion) 형성과 염증반응을 계속적으로 연장시키는 반혼 조직(scar tissue)의 형성을 와해(breakdown)시킨다.(Wale, 1976)

사. 전기치료
근육에 전기자극을 주어 가동성을 유지한다.
양극경류(anodal galvanism), 초음파(ultrasonic) 및 여러 가지 형태의 전류(ionization)를 진동효과(analgesic effect), 또는 심유용해효과(fibrolytic effect)를 위해 사용할 수 있다.
TENS를 적용할 때는 음극전극(negative electrode)은 전박의 신전부위(extensor mass)의 운동점에 놓고 양극전극은 의측상과 위에 부착한다.(Asa, Ruskin, 1984)

아. 수술요법
보존적요법(conservative treatment)을 잘하면 수술을 해야 할 경우는 드물고 모든 보존적 요법이 실패할 때는 외과적인 치료가 요구된다.(대한정형외과학회, 1998)
수술 후에는 수술전에 동통을 유발시키는 운동을 2~3개월 하지 않는 것이 필요하다.

III. 결론

국민 소득의 증대함에 따라 스폿츠의 대중화가 이루어지면서 많은 사람들이 스폿츠를 즐기게 되었다. 그 중 상당수의 사람들은 테니스, 라켓볼, 탁구, 스쿼시 등과 같은 운동으로 인하여 주관절부위 손상 때문에 병원을 찾고 있다. 그 중 대표적인 것이 테니스 염부 접착이다. 이에 따라 테니스 염부 접착의 일반적인 원인, 증상, 치료방법에 대하여 결론을 얻을 수 있다.

가. 원인
(1) 팔꿈치 주위의 근육염증이나 섬유소염이 있는 경우로 이것은 준비운동 없이 손목을 급격하게 움직여서 일어나는 경우가 많다.
(2) 팔꿈치 상완골 외과부위에 골막염이 있는 경우로 이것은 근육 부착부위의 일부 근육 섬유가 찢어져 일어나는 경우가 많다.
(3) 팔꿈치의 관절에 관절염이나 활약상염이 있는 경우로 이것은 주로 팔꿈치 관절주의 인대 손상이 원인이 되는 경우가 많다.

나. 증상
(1) 팔꿈치 부위에 통증이 있다.
(2) 경우에 따라서는 팔에서부터 손목까지 쭉 뻗어 내리는 방사통이 있다.
(3) 주먹을 잡는 힘이 약해진다.
(4) 팔꿈치 부위를 꾹 누를 때 타는 것 같은 통증이 있다.
(5) 손목을 안쪽에서 바깥쪽으로 돌릴 때 심한 통증이 일어난다.

다. 치료방법
(1) 급성기에서는 먼저 얼음찜질이나 찬물찜질을 5~20분 정도 하루에 수회하고 팔꿈치를 고정하여 움직이지 않게 한다.
(2) 만성기의 경우에는 온습포를 하루에 1~2회 한번에 20~30분 정도 실시하면서 가벼운 밥사지를 해준다.

테니스 엘보란 포괄적인 개념에서 다양한 원인과 증상을 동반하는 매우 광범위한 주관절 질병중 대표적이라고 할 수 있다. 테니스 엘보의 해부학적 연구를 통해서 미비하나마 테니스 엘보의 인데와 근육, 관절 등에서 다양한 원인과 증상을 알아보았다. 테니스 엘보의 치료는 그 원인에 따라서 치료가 이루어져야 하기 때문에 좀더 명확한 원인을 규명하는 것이 필수적이라 생각된다.

참고 문헌

1. 김정학, tennis 경기에서 일어나기 쉬운 부상과 치료에 관한 소고, 2(한국체육학회지), 25, 1986
2. 대한물리치료한회지, 제6권 제1호(KPTA), Vol. 6, NO. 1, 1985.
6. 박철빈, 직장체육의 현황과 육성방안 연구, 제2집(스포츠 과학 연구 보고서), p17, 1980

27. LaFreniere, J.(1979): Tennis elbow Evaluation, treatment and prevention. Phys ther 59:742,


