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A Note on Transfinite Cardinal Numbers

Park, Yong Sik
Dept. of Basic Studies

<Abstract>

This paper is concerned with transfinite cardinal numbers(or the cardinal number of infinite
sets). The Purpose is to investigate the general properties of transfinite cardinal numbers R,
C, 2%, 29 Ro®, W%, ™, ) and study their correlations as follows:

1. Algebraic numbers and N,.

2. Other sets with cardinality ¢ and N,.

3. Cardinal exponents and X,C.

4. The cardinality of the set of function and subset.

Cardinalities are to be well-defined sets, and every set is to be equipotent with exactly one
cardinal number. The cardinal number of any denumerable set is customarily designated by the
symbol R, (aleph-null). It is useftl to distinguish between finite cardinal numbers-that is, car-
dinal numbers of finite sets-and infinite, or transfinite cardinal numbers, which are the cardinal
number of infinite sets. We shall show to investigate a general definition of cardinal numbers
of infinite sets, or transfinite cardinal numbers.

Definition 2 : Let a, 8 be cardinal numbers and
A,B be sets such that #(4A)=a, #(B)=3,
We define a<(8 by a<{8 <=3 an injection
fiA—B. [4]

(The properties of cardinal numbers of the

1. The general definitions of the
cardinality of the set.

Definition: Let A and B be finite sets and

# (A) be the cardinal number of the set 4.
Then #(A)=#(B) implies that there exists
a bijection f: A—B (or a bijection g : B—
A).By Canter the above definition is applied
to infinite sets. [4]

finite sets)
Let a, and 7 be cardinal numbers.
(1) Transitivity of inequality; a<(8 and g<r

Sa<r.
(2) Commutativity of addition and multipli-
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cation; a+3=8 +a, af=5a.

(3) Associativity of addition and multiplic-
ation; (a+B)+r=a+(@+7), (af)r=a(fr).

(4) Invariance of inequality with respect to
addition and multiplication;
a<fa+r<p+r, ar<pr for every j.

(B) a<lf<=>Tr s.t. aty=4

(6) a<{p&a<p and a#p. [3]

Definition 3 :If a set A is equivalent to N,
the set of Natural numbers, then 4 is called
denumerable and is said to have cardinality
R, (read aleph-null or aleph naught), #(A4)
=#(N)=R,. [5]

Definition 4 : Let A be equivalent to the
interval [0,1] or R, the set of real numbers,
then A is said to have cardinality ¢ and to
have the power of the continuum, #([0,1])
=8(R)=4#(4)=C. [9]

Definition 5:Set A is equivalent to set B,
denoted by A~B if there exists a function
f i A——B which is both 1—1 and onto. The
function f is then said to define a 1—1
correspondence between sets 4 and B. [2]

. Algebraic Numbers and ¥,

The set of real algebraic numbers contains
all rational numbers and all real roots of these
rational numbers. We shall show that it must
be a likely candidate for an infinite set with
cardinal number greater than .

Theorem 1 : There
between the algebraic numbers and the

is a 1—1 correspondence

positive integers. Hence the set of the alge-
braic numbers has cardinal number .
Proof: By a real algebraic number is meant
any real root of an equation of the form,
@, %"+ @y 2" 1+ a1x-+a@=0---(*) where the
a’s are all integers with @, not zero, and
where the n’s are positive integers. Let & be
height of(#). h=n+a, -\ |a@,-1| -t +|a1| +
laoi. To each height % there correspouds a
finite number of polynomials, hence a finite

number of algebraic numbers. We know
that no polynomial equation of degree # can
have more than n distinct roots. For any
specified height %, there are only a finite
number of polynomials having this designated
height. For
polynomial with 2=3, A=4, and k=5 respe-
ctively.
Polynomials with height 3 : #2,2x,2+1,x—1, 3.
Polynomials with height 4 : %3, 242, 22+-x, x%—
2, x%+1,%2—1,3x,25+1,2x—1, 2+2,x—2, 4.
Polynomials with height 5 : x%, 2x3, x3-+ 42, 23—
22, g3+ x, 28 —x, 23+1, 231,322, 2241, 242
x, 2221, 2x%—1, x%+x+1, x2—2x+1, 2%4+2—1,
x2—x—1,x%+2x, x2—2x, x2+2,22—2, 4x,3x+
1,3x—1,2x+2,3x—2,243,x~3,5.

we can begin our customary

instance, we can find the

Accordingly,
listing for the algebraic numbers {Si, Sz, Ss,
+++, Sz, -} where S;=0(the root of polynomial
of height A=2), S:=-—1, S3=1 (h=3), Si=

~2, Sy=—4, Se=4, Sr=2 (h=4), -~

If we continue to list only those roots which
have not appeared before as we progress up
ward to new heights along the scale of positive
integers, we shall have a sequence of distinct
algebraic numbers. Since every polynomial
must have some positive integer as heighs, the
set of the algebraic numbers, {Si, Ss, Ss, -+, S,
-} is equivalent to the set of positive integers.
Hence the set of the algebraic number has

cardinality Ro.

M. Other sets with cardinal numbers
C and No.

Having established the fact that the set of
all points(real numbers) in the interval [0, 1]
has cardinality ¢, We shall now track down
other sets with this same cardinal number.
Also we shall
cardinality R, and C.

Theorem 2 : (1) Every open interval has card-

investigate the relation of

inality C.
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(@) #IXD=4#(), where I denotes the
open interval (0, 1).

Proof: (1) Let f:(a,6)—R defined by f(x)
=% for all ye (a,8), then f is a
bijection and thus #((e,8))=#(R)=C

@) Let f : I—IXI defined by f(x)=(x, L)
for all neN and xe(0,1), then f is injective

B(D<#ETXI). Next, we

shall find an injection g : I XJ———1T defined

and whence

by g {(x,9)}=z for every (x,y)elXI.
Let £=0. @182+ --(0<2,<9) and y=0. bids
+++byo-(0<8,<<9). Then we shall define the
number 2=0. @1b20sb:* @ubys18ns1bse+. (21, y1)
#(%2, y2), then x1%%; or y1 7y, Therefore
the expansion of z1=g{(x1, y1)}=0. g; V5,V
DBy Vg, M, Mg, OF O oywill be diffe-
rent from of zz=g{(xz, y2)}=0.2,® 5P g,
b1, @b, @, D5, - where 0<a,,
a,®,5,,6,9<C9. This implies 21525 The-
refore if 1728 {(x1, y1)} g {(a2y2)} or if

17y {(x1, 1)} #g{(x2, y2)}, and thus g
is injective and whence #(IXI)<#().

By the cantor-Bernstein-Schroder theorem
FUXD=#D=C
From theorem?2 the following Lemma 1 can
be proved.
Lemma 1:(1) Any two open intervals have
the same cardinal number C.
(2) The cardinal number of (0,1), (0,1],
[0,1), and [0,1] all have cardinality c.

Theorem 3:Let N be the set of natural
numbers and R be the set of real numbers.
Then F(N)=R,#(R)=C.

Proof: Since we have NCR, hence #(N)<#
(R), that is, Ry<C and Xy#C. Then there
does not exist a bijection f : N—R. Thus
BV <2 (R), ie., Ro<C,

Lemma 2 : (D#(NXN)=NR,,

(2) Ro+Rp=N,,
(3) If #eN, then n+Rp=Ry, #2Np=Ry, R,C
=C, and #C=C

Proof: (1),(2) are trivial.

(3) We have #({1,2,8,---,n}=n and #{n+

% H 3

1,42, -}=X,
Since{l,2,3, .-, n} N{n+1,n+2,---}=¢, then
#{L2 )+ H{nt+1 42, PD=#({1,2,
s mn+1,n42, - D =Ro= £ (V).
Next, since C<Cr<<CRHy<LC-C=C and Re<
R <RoRo=N,,
hence Cr=CRy=C and R=N,.
From the above statements we can know
as follows:
(e+o)+Cc=c+(c+C)=Cc+C=c, Ro+Rp)+
Ro=Ro+Ro=R¢(commutativity of addition).
Definition 6 : (1) The cardinal number « is
infinite<=>R<a
(2) A set A is infinite if Ro<<#(A4), that is,
3 an iniection f: N— A, [4]
Theorem 4 : If the cardinal number « is infin-
ite, then a+Ro=c
Proof: Since « is infinite, Ro<e. By the pro-
perties of cardinal number of the finite sets,
Ty(cardinality) s.t. y+Ro=a. Thus a+R,
=+ R)+Re=r+Ro+R)=7+Ro=(a—Ry)
+Ro=a.
We can prove easily the following Lemma 3.
Lemma 3 : (1) If ¢<b, then the closed interval
[@, 8] has cardinal number C.
(2) If cardinal number « is infinite, then
a+n=a for every meN.
Proof: (1) Since (a,5){a,b}=¢, we have
#(la,8])=#((a,5))+ # ({a,b})=2+C=C
(2) By theorem4 a+Ry=a, hence a+n
=(a+Ro)+n
=a+(Ro+n)
=a+Ny
=a
Definition 7 : If «, 8 are any cardinal numbers
and A, B are sets such that #(A)=a, #(B)
=8, then we define a8 by af=#(AXB) [3]
Lemma 4:(1) #(N XNXNX-XN)=N,
(2) BUIXIXIX--XI)=C
Proof: (1) #(NXNX---XN)=H(N)H(N)---
FV)=ReR-- Ry
=N
(2) Let I donote the open interval (0,1) and
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#((0,1))=C Then we have #(IXIX-XI)
=#D &) #(D

:C.c...c

=C

F. Cardinal exponents(m®, 2%, 2, N,*,
8.6,¢*) and 8, c.

There may be a definite connection between
functions and exponentiation. The exponent
represents the cardinal number of the so-called
domain of the function, the base represents
the cardinal number of the range.

Definition 8 :Let S be a set with cardinal
number # and let T be a set with cardinal
number m. Then m* is the cardinal number
of the set of all possible functions on S with
values in T, that is, the elements of the
new set under consideration are functions,
the exponent is the cardinal number of the
set on which the function is applied and the
base is the cardinal number of the set of
possible values which the function assume.
[5]

Example: Let S be the set {@,b,¢} and T=
{0,1}. Then the set of functions on S on T
will have cardinal number 28, A sampling
of these functions is as follows:

i jO‘Oll’lOlO
b)l 0|0, 101|110
clioj1j1j0j0j1|1|0

We will define the functions set as the set
of all triples with the number 0 and 1, that
is, (0,1,0), (0,0,1), (1,0,1), (1,1,0), (1,0,0),
©,1,1), (1,1,1), (0,0,0).

Definition9: If A,B are any sets, then we
denote by B* the set defined by Vf : feBA&>
f 1 A—B. In other words, B* is the set of
all graphs of mappings from A4 to B, We
know that #(BA)=#(B)*“ when A and B
are finite [5]

Definition 10 : B(A) is the set of all subsets
of A.

YB : BeB(A)<=>BC A [4]

Theorem 5 : The set of all subsets of N has
cardinality ¢, i.e., 2%=C

Proof: Let #({0,1}¥)=2%* and #{/)=cC and
¢ {0, 1}¥——TI defined by o(f)=0.(f(1)+
2)(A(2)+2)---(f(n)+2), where fe{0.1}¥ and
denotes open interval (0,1). o(f) is a proper
expansion, since each digit is either 2 or 3,
moreover ¢{ f)e[%, %]CI. If fi5#f:, then
Si(n)#Zfe(n) for some »# and fi, fz¢{0, 1},
Thus o(f1)#p(fz), since p(f1) and ¢(f) have
distinct proper decimal expansions. Therefore
¢ is injective and #({0,1}M<# (), i.e.,
2% <{c. Next, to prove an injection ¢ :J-——
{0,1}¥ defined by ¢, (instead of the usual
#(y) for every yel.)

Let us consider the binary expansion of y,
y=0. g,(@0)¢;(a1)py(@z)--- By(au), (¢,()=0
or 1) assigned by ¢,e{0,1}" such that ¢,: N
—4{0, 1} for every a,eN. Then we can write
y=(g,(a0), 6,(ar), p,(a2), -, $5(a@s)--).

Define yo=(1, ¢,(@1), $,(a2), $,(as)---¢,(as), ),
yl:(¢y(a0)» 1, ¢y(az)-, ¢y(an): ),

y2=(9,(a0), $,(a1), 1, gy(@)++, g;(@n), *-), -
ye=(gy(@0), $,(a1), g;(@z)---, L, $,(@ur1)-, §;

(@), ),
where ¢,(@,)=0 or 1 and yo, y1, >, ¥&r+-, el
Then y, and y; ({5%5) have distinct proper
binary expansion. If yi7#ys then ¢rns%gys.
Thus ¢ is injective and # (J)<<#({0,1}), that
is, Cc<2%, By the cantor-Bernstein-schrider
theorem C=2%,

We can prove Lemma 5 from theorem 5.
Lemma 5 : Let M be a set of cardinal number
m and B(M) be the set whose elements are
all possible subsets of the set M. Then B(M)
has greater cardinal number than the card-
inal number m of the initial set M, i.e.,
m<om, [1].
From Theorem 5 we deduce that Ro<{2%=cC
L2(2%) £22(2%) Lonunne .
Here, does there exist a cardinal number «
between N, and 2*? There does not exist a

— 908 —
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cardinal number a such that Ro<a<2% (THE
CONTINUUM HYPOTHESIS). This statement
cannot be proved or disproved. In fact it was
proved by K. Gudel in 1938 that by acce-
pting The Continuum Hypothesis as a true
statement one does not introduce a contradict-
ion, In 1964 P.J. Cohen proved that no contr-
adiction is introduced if the negation of The
Continuum Hypothesis is accepted as a true
statement. The sets which most mathematicians
use in their work are of cardinality not excee-
ding 2°, and most of them turn out to be
cither of cardinality ¥, or C. [4]

From the above statement we can imply as
follows: There is no greatest cardinal number

and R, is the smallest cardinality of infinite set.

Lemma 6 : (1) Re®=2%=cC,
(2) Cro=2%,
(3) Ro*=N,.
(4) c*=c, for every » in N.
Proof:(1) It is clear that {0, I}NCN¥O2%=We¥e,
Let feN¥ : N—sN is the mapping. Then
E(NM<HE(B(NXN))=#(2Y), since N¥is
a subset of B(NXN). Therefore Ro*o<{2%,
and Ro*e=2%=c,

(@) clearly {0, 1}NCRN-So%<CX-,
Ro®eRe=WoRre=2% {hen CRo<2® |
CRo=2%,

(3) Let #(N")=#(NI¥UD=R,". There exi-
sts a bijection @ : N'h»—N defined by o,
(1)=n for every feNW and neN, hence
Ro'=Ro. Lot HN01)=#(N)#L D=y,
e : Ni1—N, a bijection defined by p,
D =n+1, p,(=n+2 for every geNi2
and neN, hence Rp2=N,. If we assume the

since C*<

and whence

above statement true for neNOR"=NW,,
then we have Rp* 1= R,=Ry-R;=N,,
and whence R¢"=X,.

(4) is analogous to (3)

V. The cardinality of the set
of function and subset.

Theorem 6 : (1) Let Bi(4A) be the set of all

8 OH 5

finite subset of 4, then #(B.(N))=R,
(2) Let f:R—R be a continous function,
then #({feR®|f: R—R :continuous})=C.
Proof:(1) Let Bi(N)={AeB(N)| #(A)=K} and
Je={{n+1,n+42,---n--k) 1neN}TB(N) for
every keN.
Then #(J)= Ry, and thus Re<<# (By(N))
Let the mapping f:{1,2,---,2}—N be an
injection. Then = an injection p : Bx(N)
— N3 B defined by pa(B)=Fa(&) for
all ke{1,2,---, k} and fieN1-23 # #(A)=
Thus #(B«(N))
#(B:

K, since f4 is injective.
SEWE B)=Re*=R,,
€4 )):&o-

(@) Let T={fc¢R®|f:R—R . continuous} and
Q be the set of rational numbers, then for
each feI', 3 a function f;:Q—R such
that fo(x)=s(x) for all xeQ. Let a mapping
p :T—R? defined by us(x)=fo(x) for all
2¢Q. Then gy is injective. If f#£g are in
T, then 3T x0eR s.t. f(x0)#Zg(x0), i.e.,
F(x0)<g(xo). By Continuity, I >0, s.t.,
F(&)<g(x) for all xe(x0—3, xo-+5). Since we
can find a rational number zxe(xo—3, xot+
8), then fo(x)<go(x), whence foZgo.
Therefore g is injective, and #(T)<#(RY
=C*=¢, Next, since {0, 1}YCR¥CRR, then
Cr=2%=C<#(T) By the Cantor-Bernstein-
Schrioder theorem #(T)=C.

therefore
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