PWM 제어를 이용한 전압형 폴브릿지
고주파 인버터의 특성평가

심광열·김종해
전기공학과

〈요약〉
전압형 고주파 인버터를 기본으로하여 구동신호에 위상각을 부여하여 VVVF제어
기능을 인버터내부에서 실현시키도록 회로를 제안하였다. 제안된 회로에서는 자기소
효과 소자를 사용하여 전압형고주파 인버터의 스위칭 패턴에 따른 해석과 동작원리를
기술하고, 무차원화 제어변수를 도입하여 주변회로의 동작특성을 도출하였다.
또,주변회로의 설계를 위한 기초자료를 제시하며, 본 연구에서 제시된 제어기법은
유도가열 장치,산업 전문가의 전원공급개발 등 여러분야에 응용할수있다.

Characteristics evaluation of Voltage-fed Type
Full-BridgeHigh Frequency Inverter using
PWM Control

Sim Kwang Yual · Kim Jong Hae
Dept. of Electrical Engineering

* 영남대 전기과 대학원 박사 과정
This paper purposed the voltage-fed type high frequency inverter including internal VVVVF control function by means of the driving signal with phase shift angle. In the proposed circuit, we described operating principle of the main power conversion considering PWM, an analysis of which includes switching pattern of voltage-fed type high frequency Inverter with self-turn-off device. This paper induced operating characteristics of the main power conversion circuit by examination to normalized parameter.

In addition, this paper suggests some fundamental data for designing the main power conversion circuit. Control technique proposed in this paper can be applied to several areas such as induction heating, development of power supply in industrial process etc.

I. 서론

전력용 반도체 스위칭 소자를 사용한 전력 변환 장치의 고주파화 및 대용량화에 대한 많은 연구가 진행되고 있다. 전력용 반도체 소자 중 최근에 개발·실용화된 전력용 반도체 소자(Power - MOSFET, IGBT 및 SIT, SI-Thy)는 전압 제어 구동 소자로 구동 전력도 비교적 적고, 스위칭 속도도 고속이며 스위칭주파수가 수십 KHz ~ 수백 KHz 이상의 고주파 전력 변환 장치에 적극적으로 이용되고 있어 그 용용 기술이 각광을 받고 있다.

특히, Power - MOSFET는 반도체 소자 중에서도 스위칭 주파수가 수 MHz까지 가능하며, 전압 제어 구동 신호 필드로 주회로의 온·오프동작을 실현할 수 있어 전동기 속도 제어용 인버터 혹은 방송 통신 전원, 무정전 전원 장치 등에 적극 이용되고 있다.\(^1\)\(^2\)\(^3\)
전력 변환 장치 중에서도 고주파 인버터 응용은 산업용과 가전 형광등의 가열 전원을 비롯하여, 고주파 방진동 정지 장치, 중대형 방송 기기 및 강력 초음파 발전원, 고주파 Link 구성의 UPS(Uninterrupt Power Supply)등 많은 응용 분야를 창출하고 있다. 고주파 인버터는 기존적으로 부하에 대해서 전류원으로 동작하는 전류형과 전압원으로 동작하는 전압형으로 구분된다.\textsuperscript{[4]}

전류형 전진 인버터는 반도체 소자에 호르는 전류가 정합 변성기를 매개로 하여 부하에 큰 전진 전류를 공급할 수 있는 장점은 가지고 있으나, 초기 충전전류가 필요하므로 기동 시간이 길어지는 단점이 있다. 또한, 전류형 인버터는 회로 동작 원리상 역내압 특성을 갖고 있는 스위칭소자가 요구되나, 신호 반도체 소자는 역내압 특성이 없으므로 전력로 역내압 분담용 다이오드를 접속하거나 혹은 복잡한 제어회로가 요구된다.\textsuperscript{[5][6][7]}

한편, 전압형 인버터는 기동 보조 회로가 필요하지 않아 주회로 구성이 간단할 뿐만 아니라, 스위칭소자의 역내압 특성이 요구되지 않는 장점이 있어 자기 소호형 소자의 우수한 특성을 적극 이용할 수 있는 주회로 형식이다.

상기와 같은 관점에서 본 연구에서는 위상각을 변화시키는 PWM 제어기법을 제안하여 전압형 고주파 인버터에 실험하기위해 회로구성과 제어원리를 기술하였다.

또, 주변환 회로의 동작특성을 동작모드에 따라 수식화 하고,무차원화 제어변수를 도입하여 인버터의 동작특성을 범용성이 있게 평가하여 설계전단계에 필요한 기초자료를 제시한다.

II. Full Bridge Type 전압형 고주파 인버터

1 회로 구성과 동작원리

일반적으로 많이 사용되고 있는 고주파 인버터의 주회로 형식으로서는 Full bridge Type 및 Half bridge Type이 있으며, 이들 회로 특성 해석을 행할 경우 이상적인 스위칭 소자로 가정하여 회로 해석을 행하고 있다.
그림1a)는 전압형 Full-Bridge 고주파 인버터의 주회로 구성에 나타내고 그림1 b)는 실제회로에서 나타날 수 있는 표류 인덕턴스의 영향을 최소화하도록 설정한 PCB(Printed Circuit Board)회로를 나타내고 있다.

그림 1에서 스위치 \( S_1 \sim S_4 \)를 Power-MOSFET로 표기하였으나, 자기 소호형 소자일 경우 어떤 것이라도 무방하다. 다이오드\( D_1 \sim D_4 \)는 회로의 운전 특성상 나타나는 전류를 흐려주기 위한 통로로 사용된다. 인덕턴스 \( L \) 및 커패시턴스 \( C \)는 스위치 \( S_1 \sim S_4 \)의 온·오프에 따라 직렬공진회로로 구성시키기 위한 회로 소자이다.

부하로는 유도 가열 부하를 고려하고 있으며, 유도 가열은 전자 유도를 기본 원리로 하여 work-coil에 고주파 교류 전류를 흘리고, work-coil속에 피가열체를 두는 구조로 된다. 유도 가열 시의 유도전류는 가열 물체의 중심에 가장으로 작고, 표면에 가장으로 커지므로 용도에 맞도록 출력 주파수를 선정하여 사용한다.

그림2는 PWM제어를 하였을 경우의 동작 양식을 보여주고 있으며, 그림 2의 (b)와 같이 구동 신호 \( S_1' \sim S_4' \)에 변화를 주었을 경우의 동작과정 및 스위칭패턴을 보여주고 있다.

2 특성 해석

그림 1의 회로의 동작 모드는 스위치 \( S_1 \sim S_4 \) 와 회생다이오드 \( D_1 \sim D_4 \)의 온·오프 동작의 상태에 따라 표 1과 같은 동작모드와 동작 모드에서 얻어진 회로 상태 방정식의 수식을 나타내면 다음과 같다.
Fig. 1. Voltage-fed Type Full Bridge High frequency Inverter
(a) Switching Pattern  
(b) Operating waveforms

Fig. 2. Operating Mode by PWM
Table 1 Operating Mode

<table>
<thead>
<tr>
<th>TYPE</th>
<th>$S_1$</th>
<th>$S_2$</th>
<th>$S_3$</th>
<th>$S_4$</th>
<th>$D_1$</th>
<th>$D_2$</th>
<th>$D_3$</th>
<th>$D_4$</th>
<th>MODE</th>
<th>classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Mode-a</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Mode-c</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Mode-a</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Mode-b</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td>5</td>
<td>Mode-c</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td>6</td>
<td>Mode-b</td>
</tr>
<tr>
<td>II</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Mode-a</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Mode-c</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td>3</td>
<td>Mode-a</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td>4</td>
<td>Mode-b</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>5</td>
<td>Mode-c</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>6</td>
<td>Mode-b</td>
</tr>
<tr>
<td>III</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Mode-a</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Mode-a</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td>3</td>
<td>Mode-c</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td>4</td>
<td>Mode-b</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>5</td>
<td>Mode-b</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>6</td>
<td>Mode-c</td>
</tr>
</tbody>
</table>
3 무차원화 파라메타의 도입

상기 각 모드별 회로 방정식의 계수를 변화기 위해 표 2에서 나타낸 무차원 제어 변수를 도입하여 각 모드별로 회로 상태 방정식은 다음과 같다.
### Table 2 Normalized parameter

<table>
<thead>
<tr>
<th>Unit Values</th>
<th>Normalized Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Voltage</strong></td>
<td></td>
</tr>
<tr>
<td>$E_a$</td>
<td>$V^*(Z) = V(t)/E_a$</td>
</tr>
<tr>
<td>$I = E_a/Z_s$</td>
<td>$i^*(Z) = i(t)/I$</td>
</tr>
<tr>
<td><strong>Current</strong></td>
<td></td>
</tr>
<tr>
<td>$T_0 = 1/f_0$</td>
<td>$Z = t/T_0$</td>
</tr>
<tr>
<td><strong>Time</strong></td>
<td></td>
</tr>
<tr>
<td>$f_r = 1/2\pi\sqrt{L/C}$</td>
<td>$\mu = f_0/f_r$</td>
</tr>
<tr>
<td><strong>Frequency</strong></td>
<td></td>
</tr>
<tr>
<td>$Z_s = 2\sqrt{L/C}$</td>
<td>$\lambda = R/Z_s$</td>
</tr>
<tr>
<td><strong>Impedance</strong></td>
<td></td>
</tr>
<tr>
<td>$P_s = E_a \cdot I$</td>
<td>$P^*(Z) = P(t)/P_s$</td>
</tr>
</tbody>
</table>

**Remarks:**

- $f_0$: Operating frequency of Inverter
- $T_0$: Operating period of Inverter

### (4)

$$
\begin{bmatrix}
  i^*(z) \\
  v_c^*(z)
\end{bmatrix}
= 
\begin{bmatrix}
  -\frac{4\pi\lambda}{\mu} & -\frac{4\pi}{\mu} \\
  \frac{\pi}{\mu} & 0
\end{bmatrix}
\begin{bmatrix}
  i^*(z) \\
  v_c^*(z)
\end{bmatrix}
+ 
\begin{bmatrix}
  \frac{4\pi}{\mu}
\end{bmatrix}
$$
그림 3은 $\mu = 1.0, \lambda = 0.05, \varphi = 90$ 일때 PWM 제어를 하였을 경우, 회로의 상태변수의 해를 Runge-kutta법을 이용하여 얻은 각부의 이론 과정을 나타내고 있다. 회로의 동작모드 판정과 특성평가를 얻기 위한 정상상태 계산은 회로파라메터 ($\mu, \lambda, \varphi$)를 지정하고 임의의 초기치를 설정하여 무차원화 시간을 영에서 일정한 스텝으로 증가시켜 각 시간에 대한 상태변수를 수치해석으로 구하였다. 정상상태 판정은 반주기전에 설정한 초기치의 절대치와 비교하여 지정된 오차내에 들어가면 정상상태로 판정하여 특성치를 선정하였다.
Fig. 3. Theoretical waveforms
그림 4는 무차원화 부하저항 $\lambda = 0.05$로 고정시키고, 그림 2(b)의 케이트 신호를 기준
신호$(S_0^*, S_1^*)$에 대하여 $(S_0^*, S_1^*)$를 펄스폭$(T/2 - \varphi)$만큼 옮 시켰을 때의 출력 전력
$(P_{ms})$특성을 나타내고 있다.

그림에서 알 수 있듯이 임의의 동작 주파수로 운전할 경우라도 스위치간의 위치차
$\varphi$가 증가할수록 $P_{ms}$는 감소하고 있음을 나타낸다. 이는 $\varphi$의 증가는 전력 전달 시간
을 감소시키는 결과이다로 $P_{ms}$은 감소한다. 바꾸어 말하면, $\varphi$를 변화시키면 일정 동
작 주파수로 인버터를 운전하고 있을 때 출력 전력을 제어할 수 있다는 것을 알 수
있다. 그러므로 본 제어방식을 그림 1의 인버터에 적용함으로써 가변전압·가변주파
수(VVVF)제어 기능을 실현시킬 수 있다.

그림 5는 $\lambda = 0.05$로 고정시키고, $\mu$를 파라미터로 하였을 경우, $(S_0^*, S_1^*)$를 펄스폭
$(T/2 - \varphi)$만큼 옮 시켰을 때의 스위칭 소자에 호르는 전류의 초기치$(I_o)$특성을 보여주
고 있다.

그림에서 알 수 있듯이, $\varphi = 0$에서 $\mu = 1.0$을 경계로 $\mu < 1$일 경우는 초기치가 정의
값으로 주어진다. 이는 부하의 운전 상태가 전원에서 보면 용량상태로 운전되고 있
음을 나타낸다. 또 $\mu > 1$일 경우 전류초기치가 부의 값으로 나타나는데 이는 부하가
유도성으로 운전되고 있음을 나타낸다.

이 특성은 회로의 운전특성이 변화되는 것을 알 수 있고 자연전류형 소자와 사용
한 인버터에서는 나타날 수 없는 특성으로 운전동작영역의 확장을 의미하고 부하상태
에 따른 회로보호계획을 강구할 수 있다. $\mu \geq 1$의 동작영역을 택하여 운전한 경우에
는 병렬다이오드의 역회복시간에 따른 압 단락이 발생하지 않으므로 메트라임의 보호
회로 설계가 쉬워진다.

또한, $\mu = 1.0$에서 $\varphi$가 증가할수록 용량상 상태로 운전되고 있음을 알 수 있는데 이것
은 스위칭주파수가 인버터의 구동 주파수에 영향을 주기 때문이다.
Fig. 4. Characteristics of output power (\( \varphi \) parameter)

Fig. 5. Initial values characteristics of switching current (\( \varphi \) parameter)
그림 6은 $\lambda = 0.05$로 고정시키고, $\mu$를 과라메타로 하였을 경우, $(S_x^*, S_y^*)$를 펄스폭 $T/2 - \varphi$만큼 옮겼을 때의 역병렬 다이오드에 호르는 전류의 최대($I_{\text{dmax}}$) 특성을 보여주고 있다.

그림에서 알 수 있듯이, $\mu = 1.0$에서 $\varphi$가 증가할수록 $I_{\text{dmax}}$값이 서서히 증가하다가 $\varphi = 75^\circ$ 정도에서 $I_{\text{dmax}}$값이 서서히 감소되고 있는 것을 보여주고 있다. 이것은 $\varphi = 0^\circ$ 일 경우에 비해 $\varphi$가 증가할수록 용량성 운전 영역이 증가하고 $\varphi = 75^\circ$ 시점에서는 입력 전력이 부하로의 전달 시간에 상당히 감소되어 유도성운전영역으로 들어가고 있음을 보여준다. 용량성 또는 유도성 부하상태에서는 입력전원에서 많은 무효전력을 분담해야하므로 부하의 공진주파수와 출력주파수가 일치하는 상태에서 $\mu$, $\varphi$를 제어함으로서 효율좋은 운전을 할 수 있다.

![Fig. 6. Maximum current of diodes($\varphi$ parameter)](image_url)
그림 7은 $\lambda = 0.05$로 고정시키고, $\mu$를 파라메터로 하였을 경우, $(S^\circ, S^\circ_\gamma)$를 펄스폭 \((T/2 - \varphi)\)만큼 온 시점을 때의 스위칭 소자에 호르는 최대 전류($I_{\text{max}}$)를 보여주고 있다. 그림에서 알 수 있듯이, $\mu = 1.0$에서 전류가 최대가 되는 것을 볼 수 있으며 $\varphi$가 증가할수록 입력 전력이 부하로의 전달 시간이 감소되어 $I_{\text{max}}$가 서서히 감소되고 있음을 알 수 있다.

그림 8은 $\mu = 1.0$으로 고정시키고, $\lambda$를 파라메터로 하였을 경우, $(S^\circ, S^\circ_\gamma)$를 펄스폭 \((T/2 - \varphi)\)만큼 온 시점을 때의 스위칭소자와 역병렬 다이오드를 통해 호르는 최대 전류($I_{\text{max}}$)를 보여주고 있다.

그림에서 알 수 있듯이, $\varphi$가 증가할수록 $I_{\text{max}}$가 감소하고 $\lambda$가 증가할수록 중부하 상태가 되어 공정회로의 계통 계수로써 크게 작용하기 때문에 work-coil에 유입되는 전동 전류를 억제하는 결과 $I_{\text{max}}$값은 감소한다. 또한, 이 특성치는 $\mu = 1.0$에서 $\lambda$가 적을 수록 전류가 증가하여 $\lambda$가 영에 가까워지면 $I_{\text{max}}$는 급격히 증가하므로 정제적인 설계를 고려하는 경우에는 정부하일 때 과전류 대책회로가 요구된다.

그림 9는 $\mu = 1.0$으로 고정시키고, $\lambda$를 파라메터로 하였을 경우, $(S^\circ, S^\circ_\gamma)$를 펄스폭 \((T/2 - \varphi)\)만큼 온 시점을 때의 콘덴서 양단의 최대 전압($V_{\text{max}}$)특성을 보여주고 있다.

그림에서 알 수 있듯이, $\varphi$가 증가할수록 $V_{\text{max}}$값이 감소하고 또한 $\lambda$가 증가할수록 $V_{\text{max}}$값이 감소함을 알 수 있다. 이 특성치는 회로설계시 부하의 범위는 $V_{\text{max}}$값을 고려하여 설정함이 바람직하다.
Fig. 7. Maximum current of switching devices (φ parameter)

Fig. 8. Maximum current (φ parameter)
IV. 결론

본 연구에서는 자기조향형 소자의 특성을 충분히 고려하여 위상차각을 변화하는 PWM 제어기를 전압형 Full-Bridge 인버터에 적용하여 스위칭 패턴에 따른 출력저항을 제어하는 방법을 제안하여 다음과 같은 결과를 얻었다.

1) 전압형 고주파 인버터를 기본으로하여 구동신호에 위상각을 부여하여 VVVF 제어 기능을 인버터내부에 설현시켜 위상각의 변화에 따른 출력저항을 제어할 수 있다.
2) 전압형 Full-Bridge 고주파 인버터에 자기 조향형 소자를 사용함으로써 제어회로를 간단화 시킬 수 있었고, 안전 운전 동작 영역을 확장시킬 수 있었다.
3) 데드타임을 고려한 경우에 비해 위상차각을 변화시키는 PWM 제어기를 할경우 스위칭 소자의 스트레스도 줄일 수 있었다.

4) 최적 특성 해석에 무차원화 파라메터를 도입함으로써, 범용성 있는 특성 평가를 행
할 수 있었고, 제작성을 도식화하여 최로설계시 기초자료로 활용할 수 있다.

본 연구에서 제안된 위상차각을 변하시키는 PWM제어기법을 전압형 고주파 인버터에 적용하여 유도가열 전원장치를 비롯하여 DC-DC Link형 콘버터 등의 전원설비에응용할 수 있다.

참 고 문 헌


